Approximation of the Parameters of a Readability Formula by Robust Regression

نویسنده

  • Tim vor der Brück
چکیده

Most readability formulas calculate a global readability score by combining several indicator values by a linear combination. Typical indicators are Average sentence length, Average number of syllables per word, etc. Usually the parameters of the linear combination are determined by a linear OLS (ordinary least square estimation) minimizing the sum of the squared residuals in comparison with human ratings for a given set of texts. The usage of OLS leads to several drawbacks. First, the parameters are not constraint in any way and are therefore not intuitive and difficult to interpret. Second, if the number of parameters become large, the effect of overfitting easily occurs. Finally, OLS is quite sensitive to outliers. Therefore, an alternative method is presented which avoids these drawbacks and is based on robust regression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

Parameter Learning for a Readability Checking Tool

This paper describes the application of machine learning methods to determine parameters for DeLite, a readability checking tool. DeLite pinpoints text segments that are difficult to understand and computes for a given text a global readability score, which is a weighted sum of normalized indicator values. Indicator values are numeric properties derived from linguistic units in the text, such a...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

Some Modifications to Calculate Regression Coefficients in Multiple Linear Regression

In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009